Solving biharmonic equation using the localized method of approximate particular solutions
نویسندگان
چکیده
Biharmonic equation is one of the most existing operator in many areas, especially in fluid and solid mechanics, but difficult to solve due to the fourth order derivatives in the differential equation. In this paper we deal with the use of the local particular solution method to solve the two-dimensional biharmonic equation in a bounded region. The technique is based on decoupling the biharmonic problem into two Poisson equations and then, the local particular solution for Laplace equation is applied to each problem to compute their numerical solutions. The efficiency of the proposed method is demonstrated by solving different examples with both regular and irregular domains. A comparison with the Local Kansa method is also demonstrated. The influence of the shape parameter and different radial basis functions on the numerical solution is discussed.
منابع مشابه
Elzaki transform method for finding solutions to two-dimensional elasticity problems in polar coordinates formulated using Airy stress functions
In this paper, the Elzaki transform method is used for solving two-dimensional (2D) elasticity problems in plane polar coordinates. Airy stress function was used to express the stress compatibility equation as a biharmonic equation. Elzaki transform was applied with respect to the radial coordinate to a modified form of the stress compatibility equation, and the biharmonic equation simplified t...
متن کاملSolving Volterra Integral Equations of the Second Kind with Convolution Kernel
In this paper, we present an approximate method to solve the solution of the second kind Volterra integral equations. This method is based on a previous scheme, applied by Maleknejad et al., [K. Maleknejad and Aghazadeh, Numerical solution of Volterra integral equations of the second kind with convolution kernel by using Taylor-series expansion method, Appl. Math. Comput. (2005)] to gain...
متن کاملSolving singular integral equations by using orthogonal polynomials
In this paper, a special technique is studied by using the orthogonal Chebyshev polynomials to get approximate solutions for singular and hyper-singular integral equations of the first kind. A singular integral equation is converted to a system of algebraic equations based on using special properties of Chebyshev series. The error bounds are also stated for the regular part of approximate solut...
متن کاملInfinitely many solutions for a class of $p$-biharmonic equation in $mathbb{R}^N$
Using variational arguments, we prove the existence of infinitely many solutions to a class of $p$-biharmonic equation in $mathbb{R}^N$. The existence of nontrivial solution is established under a new set of hypotheses on the potential $V(x)$ and the weight functions $h_1(x), h_2(x)$.
متن کاملA localized approach for the method of approximate particular solutions
The method of approximate particular solutions (MAPS) has been recently developed to solve various types of partial differential equations. In the MAPS, radial basis functions play an important role in approximating the forcing term. Coupled with the concept of particular solutions and radial basis functions, a simple and effective numerical method for solving a large class of partial different...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. Comput. Math.
دوره 91 شماره
صفحات -
تاریخ انتشار 2014